
SUPPLEMENT TO SECT. 5.4

ERROR-DETECTING AND ERROR-CORRECTING CODES

1. Binary codes

1.1. Vector spaces over Z2. Let Bn be the set of all binary words x1 . . . xn
of length n, where xi = 0 or 1. Note that Bn is isomorphic to

Zn
2 = Z2 × · · · × Z2︸ ︷︷ ︸

n times

and is a vector space over the finite field Z2 of two elements 0 and 1. The ad-
dition of two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) is component-wise
mod 2 and multiplication of a vector x by elements of Z2 is also component-
wise, 1 · x = x and 0 · x = 0, where 0 = (0, . . . , 0).

1.2. Coding function. Suppose the original message is composed of binary
words of length m. The coding function is a function

f : Bm → Bn,

which replaces the original word u ∈ Bm by the coded word f(u) ∈ Bn,
where n > m. The words in the image f(Bm) of the coding function f in
Bn are called codewords. The goal is to detect and correct as many errors
as possible; check Examples 1 and 2 on pp. 232-233.

1.3. The Hamming distance. For every v ∈ Bn define it weight wt(v) to
be the number of 1s in its binary expression.

Lemma 1. For all u, v ∈ Bn,

wt(u + v) ≤ wt(u) + wt(v).

Proof. Since the addition is mod 2, it is clear that number of 1s in u + v is
not greater than number of 1s in u plus number of 1s in v. �

Define the distance d(u, v) between binary words u, v ∈ Bn by

d(u, v) = wt(u− v).

Note that the distance between u and v is the number of places in which
these two words differ. Also, since we are working over Z2, u − v = u + v
and d(u, v) = wt(u + v).

The following result is fundamental.

Theorem 2. The distance on Bn is symmetric, d(u, v) = d(v, u) and sat-
isfies the triangle inequality

d(u, v) ≤ d(u,w) + d(w, v)

for all u, v, w ∈ Bn.
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Proof. Using that w + w = 0 in Bn, we get from Lemma 1

d(u, v) = wt(u + v) = wt((u + w) + (w + v)) ≤ wt(u + w) + wt(w + v)

= d(u,w) + d(w, v). �

2. Error-detection and error-correction

Let f : Bm → Bn be a coding function. We say that u ∈ Bn contains
l errors, if it is obtained from a codeword v by the alteration of l digits.
In other words, u ∈ Bn contains l errors if there is v ∈ f(Bm) such that
d(u, v) = l. We say that a coding function f detects k or fewer errors, if
every u ∈ Bn, which is obtained from some codeword v by l errors, 1 ≤ l ≤ k,
is not a codeword, i.e., u /∈ f(Bm). We say that a coding function f corrects
k or fewer errors, if it detects such errors and for any u ∈ Bn with l errors,
1 ≤ l ≤ k, there is a unique v ∈ f(Bm) such that d(u, v) = l.

We have the following main results, which are, respectively, Theorems
5.4.1 and 5.4.2 in the textbook.

Theorem 3. Let f : Bm → Bn be a coding function. The f allows the
detection of k or fewer errors if and only if the minimal distance between
distinct codewords is at least k + 1.

Proof. If the minimal distance between distinct codewords is at least k + 1
and u ∈ Bn is obtained from a codeword v by l errors, then d(u, v) = l
and u /∈ f(Bm) for 1 ≤ l ≤ k. Conversely, if f allows the detection of k
or fewer errors, then no two codewords could be at a distance k. Indeed,
then by k errors one codeword would be converted to another codeword, a
contradiction. �

Theorem 4. Let f : Bm → Bn be a coding function. The f allows the
correction of k or fewer errors if and only if the minimal distance between
distinct codewords is at least 2k + 1.

Proof. Suppose that the minimal distance between distinct codewords is at
least 2k + 1. Then if for u ∈ Bn there exist two distinct codewords v and w
such that d(u, v) = l and d(u,w) = l, where 1 ≤ l ≤ k, then by the triangle
inequality

2k + 1 ≤ d(v, w) ≤ d(u, v) + d(u,w) = 2l ≤ 2k

— a contradiction! Conversely, suppose that f allows the correction of k or
fewer errors and there are two codewords u and v such that d(u, v) = 2k.
The codewords u and v differ in 2k places. Changing k of them in v, we
obtain w ∈ Bn such that d(w, v) = d(w, u) = k — a contradiction to the
assumption that f allows the correction of k errors. �

Using these theorems, check that the code in Example 3 on p. 236 detects
up to two errors and corrects any single error.
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3. Linear codes

A coding function f : Bm → Bn gives a linear code if its image f(Bm) is
a subgroup of Bn. This is equivalent to the statement that if u and v are
the codewords, than u+ v is also a codeword. (Recall that u+ v = u− v in
Bn). In particular, 0 = u + u is a codeword.

Theorem 5.4.3 asserts that for a linear code the minimal distance between
distinct codewords is the lowest weight of the non-zero codeword. Indeed,
let d(u, v) = d be the minimal distance and x = wt(w) be the minimal
weight of a non-zero codeword. Than

d ≤ d(w,0) = wt(w) = x and d = d(u, v) = wt(u + v) ≥ wt(w) = x,

which shows that d = x.
Every linear transformation f : Bm → Bn of Z2-vector spaces Bm and

Bn produces a linear code. Indeed, this follows from the defining property
of a linear transformation

f(u + v) = f(u) + f(v) for all u, v ∈ Bm,

so that the range W of f is a subgroup of Bn. Every such linear transfor-
mation f is given by a m× n matrix G by the formula

f(u) = u ·G,

where u ∈ Bm is considered as 1 × m matrix (a row vector) and · stands
for the matrix multiplication of the 1 × m and m × n matrices, so that
f(u) ∈ Bn. The matrix G of the form G = (Im, A), where Im is the m×m
identity matrix and A is m× (n−m) matrix, is called a generator matrix.
We have w = f(u) = uv, where v = u · A. Thus the codeword w = uv
consists of the original word u and the “check digits” v = u · A. Consider
Examples 1-4 on pp. 239-240.

4. Detecting and correcting errors

Consider a linear code f : Bm → Bn with a subgroup W ≤ Bn of the
codewords. The coset decoding table is obtained as follows. In the top row
list, in any order, all elements of W starting with 0. Next, choose a word
v of minimal weight in Bn which is not in W (if there are several, choose
any one). In the second row list all elements of the coset v + W exactly
in the same order as in the first row, element v + w beneath a codeword
w for all w ∈ W . Then look for an element u of minimal weight which is
not already listed above and list its coset u + W ; u + w should be beneath
v+w. Continue until all elements of Bn are being listed. The table has |W |
columns, the order of the subgroup W , and 2n/|W | rows, the order of the
coset space Bn/W . The elements of the first column of the coset decoding
table are called coset leaders.

To decode a message, we correct each word which is not a codeword by
finding it in the coset decoding table and replacing it by the codeword from
the first row which is in the same column as the given word. This is called
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a maximum likelihood decoding since we correctly decode only words with
few errors. Consider Example on pp. 242-243 with the generating matrix

G =

(
1 0 1 1 0
0 1 0 1 1

)
.

The minimal distance between codewords is 3 so the code detects 2 errors
and corrects one error. Now consider the received message on the bottom
of p. 243. Decoding it by using the coset decoding table, you will see that
it corrects all single errors but does not correct double or triple errors.

If the linear code f : Bm → Bn is given by a generator matrix, there
is no need to construct and store in the memory the whole coset decoding
table. Namely let G = (Im, A), where A is m × (n − m) matrix, be the
corresponding generator matrix. Then w ∈W if and only if w = u ·G = uv,
where v = u ·A. Equivalently, the last equation can be written as w ·H = 0,
where n× (n−m) matrix H, called parity-check matrix, is given by

H =

(
A

In−m

)
,

and In−m is (n−m)× (n−m) identity matrix. Indeed, for w ∈W we have

w ·H = uv ·
(

A
In−m

)
= u ·A + v = u ·A + u ·A = 0,

since w = uv ∈ W if and only if v = u · A. (Note that we working over in
the finite field Z2).

In the coding theory, for a word w ∈ Bn the n −m word w ·H is called
a syndrome of w. Thus we have the following result (Theorem 5.4.5 and
Corollary 5.4.6 in the textbook).

Theorem 5. Let H be the parity-check matrix associated with a given gen-
erator matrix G. Then w ∈ Bn is a codeword if and only if its syndrome
w ·H = 0 in Bn−m and two words are in the same row of the coset decoding
table if and only if they have the same syndrome.

Then from a coset decoding table one gets a two column decoding table,
the second column being coset leaders with the first column being their syn-
dromes. One can construct such table without constructing coset decoding
table first.

The corresponding correction algorithm is the following.

(1) Compute the syndromes w · H, where w ranges over all received
words in a message and H is the parity-check matrix.

(2) If the syndrome w ·H is not zero, add it to the coset leader in the
same row as the syndrome. The result is a codeword.

(3) Take the initial m digits of all obtained codewords.

This will correct as many errors as the code allows, see Theorems 5.4.1
and 5.4.2. Some multiple errors will still remain. In case when a message
contains few errors, the method works. Check Example on p. 250.
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